conserve water (31)

12 Jun 2018

Good Timing

Fernandez, Thomas R. (Michigan State University)

An earlier article discusses how much water a substrate can hold and how much to replenish at various depletion levels, but not how quickly plants use water. A better understanding of plant water use will allow irrigation scheduling based on the plants rather than a set volume of water. 

http://www.nurserymag.com/article/good-timing-june-2018/

16 May 2018

Where Do Nutrients Go When You Irrigate

Fernandez, Thomas R. (Michigan State University)

This article covers irrigation management with an emphasis on nutrient retention.  Prevent over-irrigation by understanding how water is held in containers.  There are many links provided to assist you in skillful irrigation management.

http://www.nurserymag.com/article/where-do-nutrients-go-when-you-irrigate/

10 Apr 2018

Improving Irrigation Efficiency Reduces Water Use

Ristvey, A., Oki, L.R., Haver, D.L., and B.J.L. Pitton (University of California Davis)

A high level of irrigation application uniformity is essential to maximize irrigation efficiency and several strategies are available to audit irrigation systems. Limitations in system design and uniformity can decrease water availability and distribution, thereby hindering efforts to provide sufficient water to plants. Inadequate plant water can reduce growth and quality, decreasing saleable product and profits, while potentially creating environmental problems. Discussed in this article are irrigation system best management practices (BMPs) to improve water use efficiency (WUE), with the potential to increase the amount of water available for distribution and decrease waste. 

https://www.amerinursery.com/water-management/improving-irrigation-efficiency-reduces-water-use/

  •   1  
  •   2  
  •   3  
  •   4  
  •   5  
  •   6  
  •   7  
  •   8  
  •   9  
  •   10  

Description of research activities

A national team of scientists is working to encourage use of alternative water resources by the nation’s billion-dollar nursery and floriculture industry has been awarded funds for the first year of an $8.7 million, five year US Department of Agriculture – National Institute of Food and Agriculture –Specialty Crop Research Initiative competitive grant.

The team will develop and apply systems-based solutions to assist grower decision making by providing science-based information to increase use of recycled water.  This award from the NIFA’s Specialty Crop Research Initiative is managed by Project Director Sarah White of Clemson University.  She leads a group of 21 scientists from nine U.S. institutions.

Entitled “Clean WateR3 - Reduce, Remediate, Recycle – Enhancing Alternative Water Resources Availability and Use to Increase Profitability in Specialty Crops”, the Clean WateR3 team will assist the grower decision-making process by providing science-based information on nutrient, pathogen, and pesticide fate in recycled water both before and after treatment, average cost and return-on investment of technologies examined, and model-derived, site specific recommendations for water management.  The trans-disciplinary Clean WateR3 team will develop these systems-based solutions by integrating sociological, economic, modeling, and biological data into a user-friendly decision-support system intended to inform and direct our stakeholders’ water management decision-making process.

The Clean WateR3 grant team is working with a stakeholder group of greenhouse and nursery growers throughout the United States.

For example, at the University of Florida graduate student George Grant is collecting data on removal of paclobutrazol, a highly persistent plant growth regulator chemical, from recirculated water using granular activated carbon (GAC) filters. This is being done in both research greenhouses and in a commercial site. The GAC filters can remove more than 90% of chemical residues, and are proving to be a cost-effective treatment method.

 

×